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Abstract 
This paper examines the issue of 3D object indexing and retrieval and tries to solve this 

problem using partial indexing approach. The hypothesis in this context is that similar 3D ob-
jects will be composed of similar 2D slices. The proposed partial 3D object indexing and re-
trieval method is applicable on both complete and incomplete 3D objects, which is based on a 
similarity measuring between 2D slices of 3D objects. The main idea behind our approach is 
to extract an initial set of 2D slices corresponding to determined axes, and then use the Apri-
ori algorithm to select the most representative ones, transforming the issue of shape-
matching between 3D objects into evaluating the similarities between their 2D slices. Exper-
iments on the Princeton Shape Benchmark (PSB) indicate that our approach outperforms 
evaluated retrieval approaches. 
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1. Introduction 
Because of the fact that 3D modelling and scanning tools are increasingly becoming more 
popular, as well as the gradual fame of 3D objects in different domains [1] [2], researchers’ 
attention has been drawn to discovering processing techniques for these 3D objects. The sig-
nificant motivation behind such research is to decrease the expense of modelling and pro-
cessing, which can be achieved through conceiving indexing and retrieval approaches to make 
quick and consistent search engines. The main challenge in 3D object indexing and retrieval 
process is to accomplish a robust descriptor by extracting 3D objects’ geometric and topologi-
cal features, creating a signature that can distinguish them. The 3D object indexing and re-
trieval paradigms can be broadly divided into global based approaches, and partial based ap-
proaches. 
Global based approaches are characterized by the global visual appearance of the 3D object. 
They have the capacity to describe the whole 3D object with a single vector. Nevertheless, 
they do not have the ability to correctly match the 3D objects when the disposable data for the 
latter is incomplete, imperfect, or corrupted. The partial based approaches can solve the issue 
of matching incomplete or imperfect 3D objects, in addition to their capability to supply a 
higher level description of a 3D model. In fact, partial based approaches are based on a thor-
ough analysis of the partials of 3D objects. They are motivated by the idea that similar 3D ob-

https://doi.org/10.26583/sv.12.2.09
mailto:ilyass.ouazzani@gmail.com
mailto:gtaoufiq@yahoo.fr
mailto:alaoui.rach@gmail.com


 

 
 

jects consist of similar parts, whereas matching refers to the comparison of 3D objects’ parts, 
which is ordinarily realized by reducing a distance measure.  
The proposed partial 3D object indexing and retrieval approach, which can be applied on 
both complete and incomplete 3D objects, is based on similarity computed between the 2D 
representative slices of each 3D object, transforming the issue of shape matching between 3D 
objects into assessing the similarities between their respective 2D slices. The proposed ap-
proach begins by a normalization stage to ensure that similar 3D objects will be treated the 
same way, and consequently, the matching 3D objects will generate similar 2D slices. Then, 
for each 3D object, we extract an initial set of 2D slices corresponding to determined axes. Af-
terwards, we characterize each 2D slice by a vector of Zernike moments. Next, we represent 
the 2D slices of each 3D object in a transactional database. After, we use the Apriori algorithm 
and association rules to select from the initial set of 2D slices the most representative ones. 
Finally, we apply our proposed metric to compare the request’s representative 2D slices with 
those of the database. The present paper is organized as follows. In second section, we discuss 
some 3D objects retrieval approaches by classifying them into two categories, global and par-
tial methods. Section three discusses the concept of Data Mining. In the fourth part, the pro-
posed approach is introduced. Experimental results are provided in the fifth section. Finally, 
the sixth part presents the conclusion and our future work. 

2. Related work 
In the past decade, a great number of content-based techniques for the 3D object indexing 
and retrieval have been proposed [3]. In this section, we are discussing the 3D object de-
scriptors sorted into two groups: global based approaches and partial based approaches. 

2.1 Global based approaches 

Generally speaking, global based approaches try to describe the 3D object in an overall way 
without paying attention to its components which can affect their results in some instances. 
Wang et al. [4] proposed a global way to represent the 3D object using voxels. They introduce 
NormalNet, a voxel-based convolutional neural network (CNN) way for 3D object representa-
tion and retrieval. The network employs normal vectors of the object surfaces as entry, mani-
festing stronger discriminatory capacity than binary voxels. Bouksim et al. [5] introduced a 
new way to train an artificial neural network (ANN) with a histogram of characteristics 
(Shape index, dihedral angle, and shape diameter function), which are extracted directly from 
the 3D object. After the training stage, the authors concatenate the hidden layers and used 
them like a descriptor in the retrieval process. Luciano et al. [6] used geodesic moments to 
propose a new geometric approach for 3D object retrieval. They adopted an unsupervised ap-
proach for learning shape descriptors using sparse autoencoders. Biasotti et al. [7] presented 
an approach, a search engine model for dataset exploration, which is based on multiple simi-
larity criteria between models in its search. The combination of similarity criteria they are 
proposing is a user-driven navigation and similarity assessment. Furthermore, they explored 
3D object collections with different variations of the 3D objects’ properties in the dataset. 
They also interceded a combination of similarity criteria for user-driven navigation and simi-
larity assessment. Yujuan et al. [8] based their work on the scale-invariant heat kernel signa-
ture (SIHKS), to create a non-rigid 3D shape classification approach using Convolutional 
Neural Networks (CNNs). 

2.2 Partial based approaches 

Researchers’ attention has been drawn to partial indexing and retrieval 3D objects thanks to 
the development of 3D design tools and the wide accessibility of 3D scanners. This interest 
has been additionally intensified by the appearance of diverse application areas, for example, 



 

 
 

digital libraries of cultural heritage models, which demand partial 3D model indexing and re-
trieval abilities. In this specific circumstance, the scanned request can be noisy and rough, on 
the other hand, it is not clear if we can match an incomplete 3D object against a complete 
one, since there is a blank between their representations. In fact, these representations’ gap 
complicates the extraction of a descriptor that will empower a coordination between an in-
complete 3D object and the objects of the same class. 
The current partial 3D object retrieval approaches can be principally categorized as: i) part 
based, ii) image based, and iii) bag of visual words based approaches. 
A. Part based approaches 

Part based approaches are based on the theory that human being examines the semantics of 
objects’ parts to recognize it. In fact, they rely on the assumption that similar 3D objects con-
sist of similar segments. Arhid et al. [9] proposed a part based approach by segmenting each 
3D object into its constituent segments, and then for each part a descriptor is computed by 
the approach based on a multi-criteria employing data envelopment analysis (DEA). In order 
to calculate the similarity between 3D objects, the authors applied a new technique to com-
pare resemblances between descriptors of 3D object’s parts. Agathos et al. [10] introduced a 
novel retrieval approach for articulated objects. The proposed method is composed of a seg-
mentation step, which produces the 3D object’s Attributed Relation Graph (ARG), and then 
the Earth Movers Distance (EMD) is used to measure the similarity between two ARGs. 
Tierny et al. [11] took power of Reeb graph theory to ameliorate both the 3D object descrip-
tion and comparison procedures. Indeed, the authors represented each 3D object by a Reeb 
graph linked with geometrical signatures. The similarity measured between two 3D objects is 
examined by calculating an alternative of their maximum communal sub-graph. 
B. 2D image based approaches 

2D image based approaches try to represent the 3D object by a set of 2D images, and then use 
them in the indexing and retrieval process. Chen et al. [12] proposed the Light Field de-
scriptor, which is considered one of the earliest 2D image based approaches. The authors 
used Fourier coefficients and Zernike moments to describe an ensemble of 2D images cap-
tured at the vertices of a dodecahedron. Papadakis et al. [13] presented PANORAMA de-
scriptor. It consists of the 2D Discrete Wavelet Transform and 2D Discrete Fourier Transform 
computed on an ensemble of panoramic images of a 3D object, which is characterized by the 
orientation and position of the surface of the 3D object in space. Liu et al. [14] designed a 
multi-view latent variable model ( MVLVM) to have an undirected graph structure in which 
the 3D object’s image set is treated as the observations from which to acquire the latent visual 
and spatial contexts. Furthermore, they expound the learning and conjecture process of 
MVLVM for 2D image based 3D object retrieval. Ouazzani taybi et al. [15] started by extract-
ing for each 3D object a set of 2D slices corresponding to its three main axes, and then they 
use the K-means clustering method to select the representative ones, which transform the 
comparison between 3D objects into similarity computing between their 2D slices. This ap-
proach produces satisfactory results if the number of clusters is correctly chosen. Otherwise, 
the clustering step generates over-partition or under-partition. In order to remedy this prob-
lem the authors in [16] used a cluster validity index to adapt the number of clusters to the 
complexity of each 3D object. 
C. Bag of visual words based approaches 

The bag of visual words based approach has been effectively applied on 3D object indexing 
and retrieval approaches. It has exhibited fruitful applications in either geometry based or 
image-based approaches. Likewise, it has clear focal points in partial based approaches. The 
typical example of application of the bag of visual words system into image-based approach is 
the method of Furuya et al. [17], the authors used the bag of visual words method to encode 
the Scale Invariant Feature Transform (SIFT) characteristics of an ensemble of depth images 
of a 3D object into a histogram. Laga et al. [18] approach accomplished an outstanding per-



 

 
 

formance in partial based approaches by applying the bag of visual words method to the La-
place-Beltrami spectrum characteristics of a collection of evenly sampled points on the 3D 
object’s surface by projecting the geometry onto the Laplace-Beltrami operator’s eigenvectors. 

3. Data mining 
Data mining, also called knowledge discovery in databases, is an important research domain 
in computer science, it is widely used in business (insurance, retail, banking, credit card fraud 
detection system), science research (medicine, astronomy, biological data analysis), and gov-
ernment security (detection of criminals and terrorists). One of the most important DM tasks 
is to find the association rules and to discover the interesting and useful patterns and rela-
tionships in large volumes of data [19]. 
At first, the association rule theory was widely utilized for marketing aims, but it could also be 
used in different domains of research such as the searching of frequent values, pairs or co-
occurrences if the data set is in conformity with this research, as Hébrail et al. [20] posited. 
The classic method for resolving association rule issue is Apriori Algorithm proposed by 
Agrawal et al. [21]. In fact, the use of this algorithm in Data Mining allows the examination of 
the diverse feasible mixture of the items to discover likely relationships, which will be formu-
lated as association rules. Following the original definition, the issue of association rules min-
ing is presented as:  
Let I = {i1, i2, … , in} be a set of 𝑛 binary attributes called items. Let D = {t1, t2, … , tm} be a set of 
transactions composing the database. Each transaction in 𝐷 is characterized by a unique 
transaction ID and contains a subset of the items in 𝐼. A rule is defined as an implication in 
the form 𝑋 ⇒ 𝑌 where 𝑋, 𝑌 ⊆  𝐼 and 𝑋 ∩  𝑌 = ⊘. The sets of items (briefly item sets) 𝑋 and 𝑌 
are, respectively, called antecedent (left-hand side or LHS) and consequent (right-hand side 
or RHS) of the rule [22]. 
Several metrics can be used to measure the power of an association rule, the most frequently 
employed are support and confidence. The support is detailed as the proportion of the num-
ber of transactions included the antecedent 𝑋 and the consequent 𝑌 in a dataset 𝐷. The confi-
dence is defined as the probability of finding 𝑌 in transactions under the condition that these 
transactions also contain 𝑋. 

support(X → Y) =
|{X ∪ Y ⊆ T, T ∈ D}|

|D|
 (1) 

 

cofidence(X → Y) =
support(X → Y)

support(X)
 

(2) 

A rule will be accepted as an association rule, if its support and confidence satisfy a user-
specified threshold (minsup and minconf). 

4. Our approach 
In this section, we introduce our method to index and retrieve 3D objects. The principal idea 
of our approach is to represent the 3D objects by an ensemble of 2D slices transforming the 
shape-matching issue between 3D objects into measuring the similarity between their 2D 
slices. Fig. 1 shows the architecture of the proposed approach. First, we start by 3D objects 
normalization to assure invariance under scaling, translation, and rotation. Second, for each 
3D object, we extract an initial set of 2D slices corresponding to determined axes. Next, we 
describe each 2D slice by a vector of Zernike moments. Then, we represent the 2D slices of 
each 3D object in a transactional database. Thereafter, we use the Apriori algorithm to select 
from the initial set of 2D slices the most representative ones. Finally, the similarity metric is 
proposed to measure the similarity between the 3D objects’ representative 2D slices. 



 

 
 

 

4.1 3D object normalization 

Generally, 3D objects are given in random positions, orientations and scales in the 3D space. 
In many feature extraction process, it is necessary to normalize the 3D object’s orientation 
and size before feature extraction to guarantee a distinctive representation. Indeed, the nor-
malization stage aims to assure that the similar 3D objects with different positions, orienta-
tions and scales can be correctly represented by almost the same feature descriptors.  
Therefore, to ensure the invariance characteristics of our descriptor, which correlates with 
putting the 3D object into a canonical coordinate, we translate the 3D object’s centre of mass 
to coincide with the origin. To address the scale normalization, the average distance of the 
surface of the 3D object from its centroid is equal to 1. The Principal Component Analysis 
(PCA) is used to achieve the rotation normalization. 

4.2 Creating the initial set of 2D slices 
Our approach consists of creating a set of 2D slices gotten by the intersection of an ensemble 
of plans with the 3D triangle mesh. In fact, the triangle meshes provide an efficient way to 
represent 3D objects. Characteristically, geometry, connectivity and property data are at a 
time used to represent a 3D triangle mesh. So as to create the initial set of 2D slices, we take 
the intersection of the 3D triangle mesh with plans equally spaced and orthogonal to the de-
termined axes. Fig. 2 shows an example of a 3D object, at a given position, with its 2D slices 
corresponding to its Y-axis using our approach. 
At the outset, we take, for each Cartesian axes (X-, Y-, and Z-axis), the intersection of the 
normalized 3D object with 50 plans equally spaced and orthogonal to the axis.  
 



 

 
 

 
Fig. 1. The architecture of our proposed approach. 

 
Then, we turn the 3D object on the three Cartesian axes (axis by axis) by 20° until we reach 
the 160°. At each rotation of the 3D object, we capture, for only two Cartesian axes, the inter-
section of the turned 3D object with 50 plans equally spaced and orthogonal to the axis (as 
Fig. 1 shows); i.e. if we turned the 3D object on the X-axis, we extract the 2D slices corre-
sponding to the Y- and Z-axis. 
In fact, when we turn the 3D object on an axis, the slices corresponding to this axis remain 
the same as the slices corresponding to the same axis in the first position; there is only a rota-
tion change. Since we will use the Zernike descriptor, which is a rotation invariant descriptor, 
to characterize the 2D slices, it is wise to eliminate the slices corresponding to the 3D object's 
rotation axis. 
 



 

 
 

 

 

(a) (b) 
Fig. 2. Example of a 3D object (a) with its 2D slices corresponding to its Y-axis 

using our approach. 

4.3 Computing the numerical signature for each 2D slice 

Amid the large image descriptors existing in the literature, the moments of Zernike are 
deemed to be the most appropriate descriptors to represent the 2D slices, on account of its 
distinctive features such as rotation invariance, small feature size, fine image representing 
capacity etc. Zernike moments have been successfully used in diverse image analysis and ob-
ject recognition [23] [24] [25] [26]. Zhang and Lu [27] observed that the Zernike moments 
are very useful for capturing the main characteristics of images. This is due to the fact that 
these moments are orthogonal in nature, which ensures that moment values at different or-
ders accounts for independent and unique features of an image. 
In our method, only low order Zernike moments have been extracted from 2D slices. As a 
matter of fact, the low order Zernike moments are more able to characterize the image’s gross 
information versus high order moments which represent the detail, and also they are fewer 
vulnerable to noise. As well, the magnitudes of Zernike moments’ values are rotation invari-
ant, which allows us to eliminate 2D slices corresponding to some axes, and better classify the 
extract 2D slices. 

4.4 Selecting the 2D representative slices 

Now that we have each initial 2D slice characterized by a set of Zernike Moments, we use the 
Apriori algorithm to select the 2D representative slices. To achieve this task, we represent the 
2D slices of each 3D object in a transactional database. Therefore, each row (transaction) in 
the transactional database agrees with the 2D slices corresponding to an extraction axis.  
In order to label the initial set of 2D slices in the transactional database, we use the cluster 
validity index proposed by Do et al. [28] to automatically define the optimal number of clus-
ter according to the 3D object’s complexity. In fact, clusters structures can have one of three 
states: under-partition state (K < K*), optimal partition state (K = K*) or over-partition state 
(K > K*). It is possible to find the optimal number of clusters using two measures: mean in-
tra-cluster distance (MICD) and minimum inter-cluster distance (ICMD). 
The MICD of the ith cluster MICDi is defined by: 

𝑀𝐼𝐶𝐷𝑖 =  
1

𝑛𝑖
∑ ∥ 𝑉𝑖 − 𝑥 ∥

𝑥∈𝜒𝑖

 (3) 

Where 𝜒𝑖, 𝑉𝑖and 𝑛𝑖 respectively represent the data set of the ith cluster, the centroid of the ith 
cluster and the number of data in the ith cluster. 



 

 
 

ICMDmin =  min
i≠j

∑ ∥ Vi − Vj ∥

x∈χi

 (4) 

Where 𝑉𝑖 and 𝑉𝑗 respectively represent the centroid of the ith and jth cluster. 

Let 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 be a finite data set, and let 𝑉 = [𝑣1, 𝑣2, … , 𝑣𝐾]𝑇 be a 𝐾 centroid, each 𝑣𝑖 
characterizes one of the 𝐾 clusters. The under-partition measure 𝑣𝑢𝑛𝑑𝑒𝑟(𝐾, 𝑉, 𝑋) and over-
partition measure 𝑣𝑜𝑣𝑒𝑟(𝐾, 𝑉) , respectively defined by Eq. (5) and Eq. (6), have different 
scales depending on the structure and the number data. Thus, a normalization of these func-
tions is necessary. 

𝑣𝑢𝑛𝑑𝑒𝑟(𝐾, 𝑉, 𝑋) =  
1

𝐾
∑ 𝑀𝐼𝐶𝐷𝑖

𝐾

𝑖=1

 (5) 

 

𝑣𝑜𝑣𝑒𝑟(𝐾, 𝑉) =  
𝐾

𝐼𝐶𝑀𝐷𝑚𝑖𝑛
 (6) 

For 2≤K≤Kmax. 
Let us define partition measure vectors as: 

𝑉𝑢𝑛𝑑𝑒𝑟 = [𝑣𝑢𝑛𝑑𝑒𝑟(2, 𝑉, 𝑋), … , 𝑣𝑢𝑛𝑑𝑒𝑟(𝐾𝑚𝑎𝑥, 𝑉, 𝑋)] (7) 
 

𝑉𝑜𝑣𝑒𝑟 = [𝑣𝑜𝑣𝑒𝑟(2, 𝑉), … , 𝑣𝑜𝑣𝑒𝑟(𝐾𝑚𝑎𝑥, 𝑉)] (8) 
For each vector, maximum and minimum values are computed as: 

𝑉𝑢𝑛𝑑𝑒𝑟_𝑚𝑎𝑥 = max
𝐾

( 𝑣𝑢𝑛𝑑𝑒𝑟(𝐾, 𝑉, 𝑋)) (9) 

 
𝑉𝑜𝑣𝑒𝑟_𝑚𝑎𝑥 = max

𝐾
( 𝑣𝑜𝑣𝑒𝑟(𝐾, 𝑉)) (10) 

 
𝑉𝑢𝑛𝑑𝑒𝑟_𝑚𝑖𝑛 = min

𝐾
( 𝑣𝑢𝑛𝑑𝑒𝑟(𝐾, 𝑉, 𝑋)) (11) 

 
𝑉𝑜𝑣𝑒𝑟_𝑚𝑖𝑛 = min

𝐾
( 𝑣𝑜𝑣𝑒𝑟(𝐾, 𝑉)) (12) 

For 𝐾 = 1,2, … , 𝐾𝑚𝑎𝑥 
The normalization of each function becomes: 

𝑉𝑢𝑛𝑑𝑒𝑟𝑁(𝐾, 𝑉, 𝑋) =
𝑣𝑢𝑛𝑑𝑒𝑟(𝐾, 𝑉, 𝑋) − 𝑣𝑢𝑛𝑑𝑒𝑟_𝑚𝑖𝑛

𝑣𝑢𝑛𝑑𝑒𝑟_𝑚𝑎𝑥 − 𝑣𝑢𝑛𝑑𝑒𝑟_𝑚𝑖𝑛
 (13) 

 

𝑉𝑜𝑣𝑒𝑟𝑁(𝐾, 𝑉) =
𝑣𝑜𝑣𝑒𝑟(𝐾, 𝑉) − 𝑣𝑜𝑣𝑒𝑟_𝑚𝑖𝑛

𝑣𝑜𝑣𝑒𝑟_𝑚𝑎𝑥 − 𝑣𝑜𝑣𝑒𝑟_𝑚𝑖𝑛
 (14) 

Therefore 𝑣𝑢𝑛𝑑𝑒𝑟 and 𝑣𝑜𝑣𝑒𝑟 always lies between 0 to 1. As a result, normalization partition 
measure vectors are defined as: 

𝑣𝑢𝑛𝑑𝑒𝑟𝑁 = [
𝑣𝑢𝑛𝑑𝑒𝑟𝑁(2, 𝑉, 𝑋), …

, 𝑣𝑢𝑛𝑑𝑒𝑟𝑁(𝐾𝑚𝑎𝑥, 𝑉, 𝑋)
]

𝑇

 (15) 

 
 
The validity index, noted by 𝑉𝑆𝑉, is formulated by adding 𝑣𝑢𝑛𝑑𝑒𝑟𝑁 and 𝑣𝑜𝑣𝑒𝑟𝑁, thus is written 
as: 

𝑉𝑆𝑉(𝐾, 𝑉, 𝑋) = 𝑣𝑢𝑛𝑑𝑒𝑟𝑁(𝐾, 𝑉, 𝑋) + 𝑣𝑜𝑣𝑒𝑟𝑁(𝐾, 𝑉) (17) 
The optimal number of group is obtained for the smallest value of 𝑉𝑆𝑉(𝐾, 𝑉, 𝑋) for 𝐾 varying 
from 2 to 𝐾𝑚𝑎𝑥. In our method, the application of this cluster validity index, taking the inter-

𝑣𝑜𝑣𝑒𝑟𝑁 = [𝑣𝑜𝑣𝑒𝑟𝑁(2, 𝑉), … , 𝑣𝑜𝑣𝑒𝑟𝑁(𝐾𝑚𝑎𝑥, 𝑉)]𝑇 (16) 



 

 
 

val [2, 500], allows us to fully determine the optimal number of cluster depending on the 
complexity of the 3D object.  
Now that we have determined the optimal number of cluster depending on the 3D object’s 
complexity, we assign an identical label to the 2D slices that are in the same cluster. Next, in 
each row of the transactional database, we diminish the number of items (which correspond 
to the 2D slices) to the minimum by eliminating the redundancies.  
To extract the representative 2D slices, we use the transactional database of each 3D object, 
and we apply the Apriori algorithm to extract the association rules, which will be used to de-
termine the representative slices. After some experiments that we made to determine the 
suitable minsup and minconf, we conclude that it is proper to choose 25% and 90% as, re-
spectively, minsup and minconf threshold. 

4.5 Computing the similarity 

The aim of similarity measurement is to maintain the smallest possible distances for similar 
objects, and to make dissimilar objects as far as possible in the feature space. Therefore, the 
suitable similarity measurements should be designed to compute accurately the content simi-
larity. 
In our approach, we have represented each 3D object by a set of characteristic slices, trans-
forming the issue of shape-matching between 3D objects into how to compute the similarity 
between their representative 2D slices. Therefore, one-to-one correspondence was turned to 
many-to-many correspondence. Amongst the existing many-to-many distance measure-
ments, Hausdorff distance has manifested its efficiency and powerful in the current retrieval 
works [29] [30]. 
Let us consider two sets 𝐴 = {𝑎1, … , 𝑎𝑙}  and 𝐵 = {𝑏1, … , 𝑏𝑚}, the Hausdorff distance 𝐻(𝐴, 𝐵) 
computes the level of mismatch between 𝐴 and 𝐵 by computing the distance of the point of 𝐴 
which is furthest from any point of B and vice versa. In fact, the Hausdorff pay particular at-
tention to the dissimilarity of the two sets, but that can conduct to inappropriate results when 
some troubled components existed in a set.  For instance, assume that all elements of A and B 
have a strong similarity except one pair that is different. The Hausdorff distance will ignore 
all similar elements by taking into consideration only the dissimilarity between the more dif-
ferent pair. 
In order to overcome the Hausdorff weakness, we define our metric based on Hausdorff dis-
tance, and take into consideration the dissimilarity between all pairs in the set. Therefore, the 
dissimilarity between the 𝑁 representative slices of object 𝑂 and 𝑀 representative slices of 
query 𝑄 is defined as:  

𝐷(𝑂, 𝑄) =  max (
∑ 𝑖𝑛𝑓1≤𝑗≤𝑀 (𝑑𝑂𝑖𝑄𝑗

)1≤𝑖≤𝑁

𝑁
,

∑ 𝑖𝑛𝑓1≤𝑖≤𝑁 (𝑑𝑂𝑖𝑄𝑗
)1≤𝑗≤𝑀

𝑀
) (18) 

Where 𝑑𝑂𝑖𝑄𝑗
 accounts for the Euclidean distance between the 𝑖𝑡ℎ representative slice of 𝑂 and 

the 𝑗𝑡ℎ representative slice of 𝑄. 

5. Experiments and Results 
In this study, the 3D objects of the Princeton Shape Benchmark (PSB) database are used to 
evaluate our approach; this database is freely available online and widely used in many 
works. It contains 1814 3D objects collected from the internet, and classified by humans ac-
cording to function and form. It includes a set of hierarchical classifications, separate training 
and test sets, annotations for each model, and a suite of software tools for generation, analy-
sis, and visualization of shape matching results [31]. 



 

 
 

In order to investigate the performance of our approach, we compared it to 12 3D indexing 
and retrieval approaches used in the PSB (D2 Shape Distribution (D2) [32], Extended Gauss-
ian Image (EGI) [33],Complex Extended Gaussian Image (CEGI) [34],Shape Histogram 
(SHELLS) [35], Shape Histogram (SECTORS)[35],Shape Histogram(SECSHEL) [35], Spheri-
cal Extent Function (EXT)[36], Radialized Spherical Extent Function (REXT) [37], Gaussian 
Euclidean Distance Transform (GEDT) [38], Spherical Harmonic Descriptor (SHD) [38], and 
Light Field Descriptor (LFD) [12]). 
To objectively examine our approach, we utilized the PSB’s evaluation tools with respect to 
the base classification. As a matter of fact, the benchmark evaluation tools generate visualiza-
tions (Precision-recall plot, Tier image, and the top five retrieval results), and statistics 
(Nearest neighbor (NN), First-tier (FT) and Second-tier (ST), E-Measure (EM), Discounted 
Cumulative Gain (DCG), and Normalized Discounted Cumulative Gain (N-DCG)) to facilitate 
the comparison of 3D object indexing and retrieval approaches. We invite the reader to con-
sult [31], which provides more details on the evaluation criterion. 
Tab. 1 summarizes the retrieval statistics for each method. LFD slightly outperformed our ap-
proach in ST (48.7% vs. 48.6%), and E-Measure (28.0% vs. 27.7%). However, our approach 
gives the best score in closest match metrics (NN (74.0%), FT (39.6%), DCG (66.8%), and N-
DCG (23.5%)), which means that our method is the best one in placing the right matches at 
the top of the retrieval list.  
Fig. 3 shows recall-precision curves for each descriptor. As we can observe, the recall-
precision curves demonstrates that our approach outperforms the compared methods and 
confirms the retrieval statistics shown in Tab. 1.  Additionally, when the recall increases, the 
whole curve of our approach decreases slowly compared to the other descriptors, which 
means that our method is more stable.  
Fig. 4 presents image visualizing nearest neighbor (white), first tier (yellow), and second tier 
(orange) matches using our approach in the PSB database. A strong retrieval approach should 
have a group of white-yellow pixels in the class-sized blocks along the diagonal. As we can no-
tice in Fig. 4, our method has brighter pixels in the diagonal class-sized blocks showing that 
the 3D objects within the same class present higher similarity.  
Fig. 5 demonstrates a portion of the retrieval 3D objects on the test set of the PSB using our 
approach. The first column in the figure shows the 3D objects queries and the rest of the col-
umns present the 10 retrieved 3D objects in rank order. As can be found from the outcomes 
acquired by our method, practically all the retrieved 3D models appertain to the query ob-
ject’s class. 

Table 1. Retrieval performances using our approach and those used in the PSB 

Shape de-
scriptors 

NN FT ST E-Measure DCG N-DCG 

Our ap-
proach 

74.0% 39.6% 48.6% 27.7% 66.8% 23.5% 

LFD 65.7% 38.0% 48.7% 28.0% 64.3% 18.9% 

REXT 60.2% 32.7% 43.2% 25.4% 60.1% 11.1% 

SHD 55.6% 30.9% 41.1% 24.1% 58.4% 8.0% 

GEDT 60.3% 31.3% 40.7% 23.7% 58.4% 8.0% 

EXT 54.9% 28.6% 37.9% 21.9% 56.2% 3.9% 

SECSHEL 54.6% 26.7% 35.0% 20.9% 54.5% 0.8% 

VOXEL 54.0% 26.7% 35.3% 20.7% 54.3% 0.4% 

SECTORS 50.4% 24.9% 33.4% 19.8% 52.9% -2.2% 



 

 
 

CEGI 42.0% 21.1% 28.7% 17.0% 47.9% -11.4% 

EGI 37.7% 19.7% 27.7% 16.5% 47.2% -12.7% 

D2 31.1% 15.8% 23.5% 13.9% 43.4% -19.7% 

SHELLS 22.7% 11.1% 17.3% 10.2% 38.6% -28.6% 

 

 
Fig. 3. Average precision-recall curves 

 
In order to investigate the stability of our proposed method against the incomplete 3D ob-
jects, additional experiments have been realized. In fact, we have created a set of incomplete 
3D objects using meshLab software by arbitrarily removing parts of 3D objects, and we have 
used them as queries. Fig. 6 demonstrates some retrieval examples using our method. The 
first column exposes 7 incomplete 3D objects queries, and each row exposes the top 10 re-
trieval results using our approach. From the obtained results, we can deduce that our ap-
proach performs well, and succeeds to correctly match the incomplete 3D objects. 

6. Conclusion 
In this paper, we introduced a new partial 3D object indexing and retrieval approach combin-
ing 2D slices and Apriori algorithm. The principal idea of our work was to take advantage of 
2D slices and Data mining algorithms to upgrade the 3D shape description for both complete 
and incomplete 3D objects. In fact, we used the Apriori algorithm to choose from an initial set 
of 2D slices, which are extracted from the 3D object, the most representative ones, and then 
use them to describe the 3D object. Extensive experiments have shown that our approach 
gives effective results in terms of retrieval performances, and hence outperforming some of 
the well known methods in the literature.  
 



 

 
 

 

Fig .4 Tier image visualizing nearest neighbor (white), first tier (yellow), and second 
tier (orange) computed by matching every 3D object (rows) with every other 3D object 

(columns) in the PSB database using our approach. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

Query Top ten 3D objects retrieved 

 
Fig. 5. Top 10 retrieved 3D objects using the proposed approach with normal query 

 
Query Top ten 3D objects retrieved 

 
Fig. 6. Top 10 retrieved 3D objects using the proposed approach with incomplete query 

 
In future studies, we intend to utilize a multi-agent system to make our approach less compu-
tationally expensive. Also, we will continue to adhere to partial 3D object retrieval approaches 
by taking advantage of the power of deep learning.  
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